
ANOVA
Testing more than 2 conditions



ANOVA

Today’s goal: 
Teach you about ANOVA, the test used to measure the 
difference between more than two conditions 

Outline: 

- Why anova? 

- Contrasts and post-hoc tests 

- ANOVA in R



Why ANOVA?
the problem of family-wise error, and how to deal with it



Why ANOVA?
Differences between >2 
systems / groups: 

Are there differences in 
perceived system 
effectiveness between 
these 3 algorithms? 

First do an omnibus test, 
then post-hoc tests or 
planned contrasts 

Family-wise error!
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Family-wise error

One statistical test: is the observed effect is “real” or due to 
chance variation?  

We cannot be 100% certain, so we take alpha = .05  
1 out of every 20 significant results could be a mistake! 

Test all possible pairs of 5 conditions: 10 tests! 
AvB, AvC, AvD, AvE, BvC, BvD, BvE, CvD, CvE, DvE



Family-wise error

Each test finds a true effect 95% at the time. What is the 
chance of finding all true effects? 

0.9510 = 0.599 

What is the chance of making at least one mistake? 
1 – 0.599 = 0.401 

That’s way higher than 5%!



Family-wise error

How to deal with this? 

First, do an omnibus test to test if there is any effect 

Then, test “planned contrasts”… 
Carefully selected follow-up tests 

…or “post-hoc tests”  
All possible tests, but with a corrected level of alpha



Omnibus test

We test if there is any effect using the F-ratio 
The ratio between the variance explained by the model 
and the residual variance 

This tests whether the model is a significant improvement 
compared to using “no model” 

“No model” = the grand mean



Sums of squares

Total sum of squares (SSt)  
squared e from the mean 

∑(obsi – grand mean)2 

Note: s2 is ∑(obsi – grand 
mean)2/N–1 

Hence, SSt = s2(N–1)
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Sums of squares

Residual sum of sq. (SSr) 
Squared e from the model 

∑(obsi – meank)2 

Within each group k, sk2 is 
∑(obsi – meank)2/Nk–1 

Hence, SSr = ∑sk2(Nk–1)

User satisfaction

-2

-1

0

1

2
error e



Sums of squares

Model sum of squares (SSm) 
SSt – SSr 

Or in terms of sums of sq.: 
∑nk(meank – grand mean)2 

Summed over k groups
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Mean squares

SSm is based on k differences 
So it increases with an increased number of groups (k)! 

It has k–1 degrees of freedom  
(k means, minus 1 grand mean) 

Mean squares: MSm = SSm/dfm, where dfm = k–1 



Mean squares

SSr is the sum of k variances 
Each has Nk–1 degrees of freedom 

Therefore, SSr has N–k degrees of freedom 
(n values, minus k group means) 

Mean squares: MSr = SSr/dfr, where dfr = N–k



F-ratio
F = MSm/MSr 

It has two df parameters: dfm and dfr 

It tests the question:  
“How much did the model improve (over the grand 
mean), compared to the remaining error?” 

Null hypothesis: 
Ma = Mb = Mc = … 

If significant, there is a difference (but doesn’t say where!)



Example
Grand mean: 3.467,  
grand s2: 3.124 

SSt = 3.124*14 = 43.74,  
SSr = (1.7+1.7+2.5)*4 = 23.60, 
SSm = 43.74–23.60 = 20.14 

MSm = 20.14/2 = 10.07,  
MSr = 23.60/12 = 1.97 

F-ratio = 10.07/1.97 = 5.11 
with 2 and 12 df

Placebo Low High
3 5 7
2 2 4
1 4 5
1 2 3
4 3 6

gr means 2.2 3.2 5.0
s2 1.7 1.7 2.5



It is all the same!

Multiple regression: Yi = a + b1X1i + b2X2i + ei 

T-test: let’s say you test system A vs B vs C 

Choose a baseline (e.g. A) 

Create X dummy variables for B and C: 
X1 = 1 for B, X1 = 0 for A and C 
X2 = 1 for C, X2 = 0 for A and B



It is all the same!
Multiple regression: Yi = a + b1X1i + b2X2i + ei 

X1 = 1 for B, X1 = 0 for A and C 
X2 = 1 for C, X2 = 0 for A and B 

Interpretation: 
For system A: Yi = a + b1*0 + b2*0 = a 
For system B: Yi = a + b1*1 + b2*0 = a + b1 

For system C: Yi = a + b1*0 + b2*1 = a + b2 

b1 is the difference between A and B, b2 between A and C



It is all the same!

Multiple regression: Yi = a + b1X1i + b2X2i + ei 

F-test in regression: test model against the mean 
The mean is a model: Yi = a + ei 

Therefore, the F-test has as H0: b1 = 0 and b2 = 0 
In other words, H0 is that Ma = Mb = Mc 

If the F-test is significant, there is a difference  
(but doesn’t say where!)



Assumptions
Normality within the groups 

ANOVA is fairly robust against violations, as long as 
groups are equal in size 
Otherwise, use robust methods 

Homoscedasticity 
Also robust with equal groups; Welch’s method available 

Independence 
Very important



ANOVA in R

Dataset “Viagra.dat” -> set name to viagra 
Effect viagra on libido 

Variables: 
person: participant ID 
dose: Viagra treatment (1=Placebo, 2=Low Dose, 3=High 
Dose) 
libido: level of libido after treatment (between 1 and 7)



Plotting
Let’s start by making dose a factor with nice labels: 

install “plyr” for the revalue function 
viagra$dose <- revalue(as.factor(viagra$dose), 
c("1"="Placebo","2"="Low Dose","3"="High Dose")) 

Line plot with bootstrapped CIs: 
ggplot(viagra,aes(dose,libido)) + 
stat_summary(fun.y=mean, geom=“line”) + 
stat_summary(fun.data=mean_cl_boot, geom=“errorbar”, 
width = 0.2)



Assumptions

Normality tests per group: 
by(viagra$libido, viagra$dose, stat.desc, desc=F, norm=T) 
Looks normal 

Levene’s test: 
install “car” 
leveneTest(viagra$libido, viagra$dose, center=median) 
Variance not significantly different between groups



Run the ANOVA
Run the ANOVA: 

viagraAOV <- aov(libido ~ dose, data = viagra) 
summary(viagraAOV) 

            Df Sum Sq Mean Sq F value Pr(>F)   
dose         2  20.13  10.067   5.119 0.0247 * 
Residuals   12  23.60   1.967                  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

plot(viagraAOV) <— to test the assumptions



It is all the same!

Run a regression: 
viagraLM <- lm(libido ~ dose, data = viagra) 
summary(viagraLM) 

Now try: 
summary.lm(viagraAOV) 
summary.aov(viagraLM)



Welch’s F version

If variances are not equal across groups, use Welch’s F 
oneway.test(libido ~ dose, data = viagra) 
Note that this test is not significant!



Robust versions

With WRS2, they are easier than Field’s versions 

Trimmed version: 
t1way(libido~dose, data = viagra, tr = 0.1) 

Based on the bootstrapped median: 
med1way(libido~dose, data = viagra, iter = 2000) 

Based on the bootstrapped trimmed mean: 
t1waybt(libido~dose, data = viagra, tr = 0.1, nboot = 2000)



Contrasts
How to test specific differences



Contrasts
If F-test is significant we know that the means differ 

Which means exactly? Ma and Mb? Ma and Mc? Mb and 
Mc? All of them? 

If you have specific hypotheses, do tests on planned 
contrasts 

Otherwise, do post-hoc tests 

F-test divides total variation (SSt) into model variation 
(SSm) and residual variation (SSr) 

Planned contrasts further divide SSm into components



Contrasts

SSt

SSm SSr

Low & High Placebo

Low High

ANOVA

Contrast 1

Contrast 2



Interpretation
Both contrasts are significant: 

The High dose significantly increases libido over other 
groups, can’t say anything about the Low dose group 

Contrast 1 is significant and contrast 2 is not: 
Viagra increases libido, but the dose likely doesn’t matter 

Contrast 2 is significant and contrast 1 is not: 
The High dose significantly increases libido over other 
groups, the Low dose does not



Contrasts
How to design good contrasts: 

- Split any chunk of variance (multiple conditions) into two 
chunks at most 

- If a condition has been singled out, you can’t reuse it 

- Only split, don’t merge 

- If you have a control group, your first contrast usually 
compares everything else against the control group (or 
groups) 

You will always end up with k–1 contrasts



More examples

SSm

E1, E2 and E3 Control

E1 and E2 E3

Contrast 1

Contrast 2

E1 E2 Contrast 3



More examples

SSm

C1 and C2E1 and E2

C1

Contrast 1

Contrast 2

E1 E2 Contrast 3

C2



Contrast dummies
To test a contrast, you create dummies, which assign weights 
to each condition 

Say that you are testing chunk P versus chunk Q: 

- conditions that belong to neither chunk get a weight of 0 

- conditions in chunk P get a weight of kq/(kp+kq) 
kp, kq = number of conditions in chunk P, Q 

- conditions in chunk Q get a weight of –kp/(kp+kq) 

Check: weights sum to zero, product also sums to zero



Example

Low & High Placebo

Low High

Low: +1/3 
High: +1/3 
Placebo: –2/3

Low: +1/2 
High: –1/2 
Placebo: 0

Group Dummy 1 Dummy 2 Product
Placebo –2/3 0 0

Low dose 1/3 –1/2 –1/6
High dose 1/3 1/2 1/6

Sum 0 0 0

Interpretation: 
Dummy 1: difference between placebo 
and average of Low and High 
Dummy 2: difference between Low 
and High



More examples

SSm

E1, E2 and E3 Control

E1 and E2 E3

E1, E2, E3: 1/4 
Control: –3/4

E1, E2: 1/3 
E3: –2/3 
Control: 0

E1 E2
E1: 1/2 
E2: –1/2 
E3, Control: 0



More examples

SSm

C1 and C2E1 and E2

C1

E1, E2: 2/4 
C1, C2: –2/4

E1, E2: 0 
C1: 1/2 
C2: –1/2

E1 E2
E1: 1/2 
E2: –1/2 
C1, C2: 0

C2



Orthogonal

Make sure you do not reuse or merge! 
This way, you test contrasts that are orthogonal: your tests 
never include the same chunk twice 
This means that your p-values are not affected by family-
wise error! 
In other words: alpha = .05, even though you test multiple 
contrasts



Orthogonal
One famous orthogonal contrast is the Helmert-contrast: 

contr.helmert(k): 

Using this function, you don’t have to code the dummies 
yourself

Contrast Chunk P Chunk Q
Contrast 1 2 1
Contrast 2 3 1, 2

… … …
Contrast k–1 k 1, 2, 3, … k–1



Non-orthogonal
If you do reuse chunks, your contrasts are non-orthogonal 

If so, you should use a smaller alpha (see post-hoc tests) 

Some standard non-orthogonal contrasts:  

- dummy (this is the default contrast) 

- contr.SAS(k) 

- contr.treatment(k, base = x) 

k–1 contrasts that compare every other condition against the 
first (dummy), last (SAS), or x’th (treatment) condition



Polynomial

Find a trend in the data: contr.poly(k) 
Useful if your X groups are ordered 
Types: linear, quadratic, cubic, … (usually only the first two 
are used)



Contrasts in R

You already know how to get the default dummy coding: 
summary.lm(viagraAOV) 

Coefficients: 
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)     2.2000     0.6272   3.508  0.00432 ** 
doseLow Dose    1.0000     0.8869   1.127  0.28158    
doseHigh Dose   2.8000     0.8869   3.157  0.00827 ** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Compares each condition against Placebo



Helmert
Let’s try Helmert: 

contrasts(viagra$dose) <- contr.helmert(3) 
viagra$dose, or: levels(viagra$dose) 
viagraHelmert <- aov(libido ~ dose, data = viagra) 
summary.lm(viagraHelmert) 

Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   3.4667     0.3621   9.574 5.72e-07 *** 
dose1         0.5000     0.4435   1.127   0.2816     
dose2         0.7667     0.2560   2.994   0.0112 *   

dose1: Low vs. Placebo; dose 2: High vs. (Low, Placebo)



Polynomial
Let’s try Polynomial: 

contrasts(viagra$dose) <- contr.poly(3) 
viagra$dose 
viagraPoly <- aov(libido ~ dose, data = viagra) 
summary.lm(viagraPoly) 

Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   3.4667     0.3621   9.574 5.72e-07 *** 
dose.L        1.9799     0.6272   3.157  0.00827 **  
dose.Q        0.3266     0.6272   0.521  0.61201   

L is linear contrast, Q is quadratic



Make our own

Placebo against other two: 
PvLH <- c(-2/3, 1/3, 1/3) 

Low vs. High dose: 
LvH <- c(0, -1/2, 1/2) 

Load the contrasts: 
contrasts(viagra$dose) <- cbind(PvLH, LvH) 
viagra$dose

Low & High Placebo

Low High

Low: +1/3 
High: +1/3 
Placebo: –2/3

Low: –1/2 
High: +1/2 
Placebo: 0



Make our own
Run the model: 

viagraPlanned <- aov(libido ~ dose, data = viagra) 
summary.lm(viagraPlanned) 

            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   3.4667     0.3621   9.574 5.72e-07 *** 
dosePvLH      1.9000     0.7681   2.474   0.0293 *   
doseLvH       1.8000     0.8869   2.029   0.0652 .   

Viagra has a significant effect on libido (pone-tailed = .015) 

A high dose is significantly more effective than a low dose 
(pone-tailed = .033)



Reporting

Planned contrasts: 
Planned contrasts revealed that taking any dose significant 
increased libido, compared to the placebo, t(12) = 2.47, pone-

tailed = .015, and that a high dose is significantly more 
effective than a low dose t(12) = 2.03, pone-tailed = .033.



Robust contrasts?
Run robust t-tests on the contrast dummies! 

Create dummies: 
viagra$d1 <- -2/3*(viagra$dose==“Placebo")
+1/3*(viagra$dose!="Placebo") 
viagra$d2 <- -1/2*(viagra$dose=="Low Dose")
+1/2*(viagra$dose=="High Dose”) 

Run yuen, yuenbt, or pb2gen: 
pb2gen(libido~d1, data = viagra, nboot = 2000)



Post-hoc tests
…make ALL the comparisons!



Post-hoc tests

What if we have no idea which chunks to compare? 
Just compare all conditions against each other! 
But what about family-wise error? 

Post-hoc methods: reduce alpha to account for family-wise 
error 

Simplest method: Bonferroni 
divide alpha by the number of tests (pcrit = alpha/k)



Holm
Bonferroni is very conservative! 

Alternative: Holm 
Order your p-values by size, smallest first 
The pcrit for the first one is alpha/k 
If p < pcrit, move to the next (otherwise stop) 
The pcrit for the next one is alpha/(k–1) 
If p < pcrit, move to the next (otherwise stop) 
Etc.



Holm
Example: 

p-value pcrit Verdict?
0.0000 .05/6 = .0083 significant 
0.0014 .05/5 = .0100 significant 
0.0120 .05/4 = .0125 significant
0.0252 .05/3 not significant, stop!
0.1704 (also not significant)
0.3431 (also not significant)



Benjamini-Hochberg
How about controlling false discovery rate rather than type I 
error rate? 

Benjamini-Hochberg: 
Order your p-values by size, largest first 
The pcrit for the first one is (k/k)*alpha 
If p > pcrit, move to the next (otherwise stop) 
The pcrit for the next one is ((k–1)/k)*alpha 
If p > pcrit, move to the next (otherwise stop) 
Etc.



Benjamini-Hochberg
Example: 

p-value pcrit Verdict?
0.3431 0.05 not significant
0.1704 .05*(5/6) = .0417 not significant
0.0252 .05*(4/6) = .0333 significant, stop!
0.0127 (also significant)
0.0014 (also significant)
0.0000 (also significant)



Others
With equal variances and group sizes, Tukey is quite good 

When variances are unequal, or groups differ in size: 
Hochberg GT2, unfortunately not implemented in R! 

Alternative: Robust methods! 
Trimming, bootstrapping, M-estimators 
Also good for non-normality 
Note: bootstrapping is more conservative, M-estimator is 
more powerful



Post-hoc tests in R

Note: R will adjust the p-value up (rather than adjusting 
alpha down) 

Bonferroni: 
pairwise.t.test(viagra$libido, viagra$dose, p.adjust.method = 
“bonferroni”) 

Benjamini-Hochberg: 
pairwise.t.test(viagra$libido, viagra$dose, p.adjust.method = 
“BH”)



Post-hoc tests in R

Tukey: 
install the package “multcomp” 
post <- glht(viagraAOV, linfct=mcp(dose = “Tukey”)) 
summary(post) 
confint(post) 

Dunnett (tests against a baseline): 
post <- glht(viagraAOV, linfct=mcp(dose = “Dunnett”))



Robust post-hoc

Trimming: 
lincon(libido~dose, data=viagra, tr=0.1) 
CIs are corrected, p-values are not 

Trimming + bootstrapping: 
mcppb20(libido~dose, data=viagra, tr=0.2, nboot=2000) 

M-estimators: 
involves linconm, but not enough data here!



Effect sizes

R2 = SSm/SSt (in ANOVA, we call it eta-squared) 
In R, run summary.lm —> .460 
Take the square root for r: .679, this is a large effect 

Better: get omega-squared: 
(SSm – dfm*MSr)/(SSt+MSr) 
You can get all of these from the aov summary 
In the viagra case: omega-squared = .35; omega = .60



Effect sizes
Effect sizes for specific differences: use mes() in the 
“compute.es” package 

Get means, sds, and ns from stat.desc: 
desc <- by(viagra$libido,viagra$dose,stat.desc) 

Plug values into mes, e.g.: 
mes(desc$Placebo[“mean”], desc$`Low Dose`[“mean”], 
desc$Placebo[“std.dev”], desc$`Low Dose`[“std.dev”],5,5) 
“5,5” is the N in each group (change for your data!) 

Common to report d (sd difference) instead of r



Effect sizes

Effect sizes for specific contrasts: use √(t2/(t2+df)) 

Get values from contrast: 
summary.lm(viagraPlanned) 

Plug into formula: 
sqrt(2.474^2/(2.474^2+12)) = .581 
sqrt(2.029^2/(2.029^2+12)) = .505



Reporting

Omnibus test (always present this first!): 
There was a significant effect of Viagra on levels of libido, 
F(2, 12) = 5.12, p = .025, ω = .60. 

Then follow up with one of the following… 

Linear contrast: 
There was a significant linear trend, t(12) = 4.157, p = .008, 
indicating that libido increases proportionally with dose.



Reporting

Planned contrasts: 
Planned contrasts revealed that taking any dose significant 
increased libido, compared to the placebo, t(12) = 2.47, pone-

tailed = .015, and that a high dose is significantly more 
effective than a low dose t(12) = 2.03, pone-tailed = .033.



Reporting

Post hoc tests: 
Despite large effect sizes, Bonferroni tests revealed non-
significant differences between low dose and placebo, p = 
.845, d = –0.77 and between low dose and high dose, p = 
.196, d = –1.24. However, the high dose group had a 
significantly higher libido than the placebo group, p = .025; 
a difference of almost 2 standard deviations, d = –1.93. 



“It is the mark of a truly intelligent person  
to be moved by statistics.” 

George Bernard Shaw 
 


